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Passive acoustic monitoring of dolphins is limited by our 

ability to classify calls to species. Significant overlap in 

call characteristics among many species, combined with a wide 
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of calls to species challenging. Here, we introduce BANTER, a 

compound acoustic classification method for dolphins that 

utilizes information from all call types produced by dolphins 

Research, management, and mitigation of anthropogenic 

impacts on marine mammals increasingly rely on remote sensing of 

these animals using passive acoustic monitoring (PAM) 

technology. These methods are especially useful in remote 

oceanic regions, or where poor weather conditions inhibit 

traditional visual observation methods. Practical application of 

PAM requires some understanding of the vocal repertoire of the 

species under consideration. PAM has been particularly effective 

for species that produce distinctive sounds, such as porpoises 

rather than a single call type, as has been typical for acoustic 

classifiers. Output from the passive acoustic monitoring 

software, PAMGuard, was used to create independent classifiers 

for whistles, echolocation clicks, and burst pulses, which were 

then merged into a final, compound classifier for each species. 

Classifiers for five species found in the California Current 

ecosystem were trained and tested using 153 single-species 

acoustic events recorded during a 4.5 mo combined visual and 

acoustic shipboard cetacean survey off the west coast of the 

United States. Correct classification scores for individual 

species ranged from 71% to 92%, with an overall correct 

classification score of 84% for all five species. The conceptual 

framework of this approach easily lends itself to other species 

and study areas as well as to noncetacean taxa. 

Key words: acoustic, classification, dolphins, delphinids, 

whistles, burst pulses, echolocation clicks.
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and sperm whales (Barlow and Taylor 2005, Gillespie et al. 2005, 

Gallus et al. 2012), or for species that produce highly 
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stereotyped calls such as those associated with some baleen 

whale song (McDonald et al. 2006). Acoustic classification can 

be challenging for species with highly variable calls, such as 

Dolphin whistles are narrow-band frequency-modulated tonal 

sounds that serve a social or communicative function (Janik and 

Slater 1998, Herzing 2000). Whistle characteristics are highly 

variable at an individual level, with some species producing 

individually identifiable “signature whistles” (Sayigh et al. 

2007). In addition to high within-individual variability, 

geographic variation in whistles has been identified within a 

species (e.g. Azzolin et al. 2013, Papale et al. 2013). 

Moreover, there is great overlap in whistle characteristics 

across many species (Oswald et al. 2007, Azzolin 2014, Frasier 

2016). Despite the high variation at an individual level and the 

extensive overlap in whistle characteristics among species, 

acoustic classifiers based on whistle features have shown 

reasonable success in acoustic species classification (Oswald et 

al. 2007, Oswald et al. 2013, Azzolin et al. 2014, Lin and Chou 

2015). Nonetheless, there remains significant ambiguity in 

species classifications based solely on whistle characteristics. 

Also, not all dolphin species and schools produce whistles 

(Rankin et al. 2007, Oswald et al. 2008, Au et al. 2010), thus 

many dolphin species. Dolphins produce both tonal and pulsed 

vocalizations (referred to as “whistles,” “clicks,” and “burst 

pulses”) that have the widest range of spectral and temporal 

characteristics of any cetacean. Despite being highly vocal 

(Rankin et al. 2008b, c), acoustic classification has been 

difficult for these species due to their complex vocal behavior.
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acoustic identification of some dolphins must rely on 

alternative call types. 
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Echolocation clicks are short-duration, directional, 

broadband clicks used for foraging or sensory tasks (Au 1993). 

Some species have been found to produce echolocation clicks with 

distinct spectral features that allow for accurate species 

classification (Soldevilla et al. 2008, Baumann-Pickering et al. 

2010). However, there is extensive overlap in the 

characteristics of echolocation clicks for most dolphin species 

(Au 1993). The use of clicks for species identification is 

further complicated by the directional nature of these signals 

and the variation in the click characteristics based on the 

angle at which they are received. Echolocation clicks that are 

received off the longitudinal axis of the dolphins head are 

highly attenuated and variable in their spectral and temporal 

characteristics (Au 1993). Nonetheless, recent studies have 

shown varying levels of success in species classification based 

on received echolocation clicks and these sounds may have strong 

classification value for some species (Roch et al. 2011, 

Baumann-Pickering et al. 2015). 

Burst pulses are broadband clicks produced in series with very 

short inter-click intervals (ICI), and are generally attributed 

to social communication (Herman and Tavolga 1980, Herzing 1996, 

Blomqvist and Amundin 2004). Differentiation of burst pulses 

from echolocation clicks is frequently based on subjective human 

perception of ICI, with burst pulses categorized as trains of 

clicks whose ICIs are too short for individual click resolution 

by the human ear, instead generating a more complex “buzz” or 

“creak” sound. In a similar vein, burst pulses are frequently 

identified as having tonal qualities and are occasionally
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misidentified as whistles; adjustment of the fast Fourier 

transform (FFT) values to improve the temporal resolution allows 
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for identification of the individual clicks that comprise a 

burst pulse. With few exceptions, burst pulses have been 

neglected in the literature, and to our knowledge there are no 

All data were collected during the 4.5 mo 2014 California 

Current Cetacean Ecosystem Assessment Survey (CalCurCEAS). This 

survey was a combined visual and acoustic shipboard line-

transect survey of cetacean populations within the U.S. 

Exclusive Economic Zone off the west coasts of Washington, 

Oregon, and California conducted by the Southwest Fisheries 

Science Center on the R/V Ocean Starr. Visual methods consisted 

Data Collection 

Recent improvements to computer hardware and digital signal 

processing software allow for automated detection and 

measurement of various call types, and powerful multivariate 

statistical analysis tools provide an opportunity to analyze 

these data for classification purposes. Here, we present a 

method for acoustic classification of dolphin species based on 

automated detection and measurement of whistles, clicks, and 

burst pulses. Although this algorithm, called BANTER (Bio-

Acoustic eveNT classifiER), was developed using data from five 

species of dolphins in the California Current off the west coast 

of the United States, it should be readily applicable to other 

taxa as well as other regions. 

publications that consider burst pulses for automated detection 

and classification. Nonetheless, burst pulses may be critical 

for successful classification of some species (Rankin et al.

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

2007). 

METHODS 

of a team of three experienced visual observers searching with 

“big-eye” 25 × 150 power binoculars, 7× binoculars, and unaided 

This article is protected by copyright. All rights reserved 



 

         

 

 

         

 

[4299]-6 

eye (Kinzey et al. 2000). All animals detected visually were 

approached for accurate species identification and group size 

estimation. 

Sounds were monitored by an acoustic technician both 

aurally, using headphones, and visually, using real-time 

scrolling spectrographic software (ISHMAEL, Mellinger 2001). 

Bearing angles to sound sources were estimated using the phone-

pair bearing algorithm in ISHMAEL. Acoustic localization was 

performed using target motion analysis and was based on the 

convergence of bearing angles plotted to Whaltrak, a custom-

written plotting program (Rankin et al. 2008a). Acoustic 

localization of dolphin schools allowed the acoustic technician 

to determine whether an acoustic detection could be matched to a 

visually detected group of dolphins, or if it was independent of 

any visually detected group. Postcruise examination of visual 

and acoustic detections confirmed identification of recording 

A custom hydrophone array was towed at a depth of 

approximately 12 m, 300 m behind the ship while traveling at a 

speed of 10 knots during daylight hours. The hydrophone array 

included either two or four hydrophones (HTI-96-min) with dual-

stage preamplification contained within an oil-filled section of 

the array. The hydrophones had a flat frequency response from 2 

kHz to 100 kHz (−158 dB 

amplification). Signals from the array were sent through a 

Magrec signal conditioner (high pass filter at 1 kHz) and were 

recorded to a computer hard drive (500 kHz sampling rate) using 

an analog-to-digital conversion card (National Instruments 6356) 

and PAMGuard software (http://pamguard.org).
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at ±5 dB re 1v/μPa after internal 

times that could be unambiguously assigned to a specific 

visual/acoustic detection; these were defined as acoustic 
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“events.” The species composition of each acoustic event was 

based on the identification provided by the visual observers. 

Events not sighted by the visual observation team or those that 

The general methods for detecting whistles and burst pulses 

were the same, with changes made in the WM detector settings to 

improve detection of the desired call type (Table 1). The 

ceiling for the maximum frequency was set to avoid detection of 

Preliminary detection of whistles, clicks, or burst pulses 

was obtained by analyzing recordings (raw WAV files) with a 

suite of individual detectors in PAMGuard software (Gillespie et 

al. 2008). Due to the large amount of data included in the 

analysis, a maximum of 30 min was examined per event. 

Echolocation clicks were found in recordings using a series of 

click detectors developed within PAMGuard. Recordings were 

decimated to 250 kHz prior to processing with PAMGuard’s Whistle 

and Moan (WM) detector using the spectrogram format (FFT length 

4,096, hop size 2,048 samples). The WM detector identifies tonal 

sounds within the recording and has traditionally functioned as 

a whistle detector. The detector may trigger on the 

spectrographic representation of tonal bands for burst pulses, 

and the extent of these detections have been found to vary based 

on the spectrograph settings (JK, unpublished data). 

Call Detection 

could not be positively identified to species were labeled as 

“unknown.” To minimize confusion, from this point forward we 

will use 0the term “event” as defined above, and the term 

“detection” to identify individual sounds (either whistles, 

clicks, or burst pulses).
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the 38 kHz echosounder (maximum frequency 37 kHz for whistles 

and 36 kHz for burst pulses). All whistles and burst pulses that 
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fell within the time boundaries for an event were considered; 

there was no attempt to exclude false positives or add missed 

detections. For each acoustic event, the WM detector passed 

Exported measurements from whistles, clicks, and burst 

pulses were merged with metadata associated with each event 

using custom scripts written in R (R Core Development Team 

2014). A set of filters was applied to the data to reduce the 

number of false detections. Clicks with durations >0.002 s were 

eliminated to reduce the number of echosounder detections. The 

burst pulse and whistle detectors have a large degree of 

overlap; to improve discrimination based on these related 

detectors, burst pulse measures with beginning frequencies less 

Detection of echolocation clicks was accomplished with a 

suite of click classifiers (JK, unpublished data). These 

detectors were used to detect clicks; however, the preliminary 

species classification provided by the click-classifiers was not 

considered during the analyses that followed. Clicks were marked 

manually within the bearing/time display in PAMGuard’s Viewer 

Mode to group into events; click measurements were made using 

the ROCCA module within PAMGuard (Table S1). The ROCCA module 

used in this study was an early beta version and the measure of 

intensity (dB) was not saved for clicks. No attempts were made 

to exclude false positives or to include missed detections. 

detections to the ROCCA module in PAMGuard, which measured a 

suite of characteristics from each sound-type (Table S1). The 

same characteristics were measured from burst pulses using 

different settings for the WM detector. These characteristics 

were used to develop the acoustic classifier.
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than 20 kHz were eliminated. The appearance of “banding” in the 

spectrograph of burst pulses is related to the interpulse 
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interval (Wenz 1964). In an attempt to provide an automated 

measure of the ICI, two additional “delta” measurements were 

calculated: the difference between the beginning frequency of 

The strategy employed by BANTER for event classification 

considers the distribution of classification probabilities for 

each call type provided by Random Forest (Breiman 2001). 

Although classification accuracy for a given call type might be 

relatively low for a particular species, the pattern and 

frequency of misclassifications for this call type was found to 

be informative. For example, species A might have 30% of its 

misclassified whistles classified as species B and the other 70% 

as species C. If no other species had this pattern of 

misclassifications and we observe an event with a similar 30:70 

The BANTER model is based on a two-stage process. In the 

first stage, a classification model was independently developed 

for each call type and individual calls were classified to 

species. In the second stage, the results from these models were 

combined to create a model that would classify the entire event 

to species based on the set of calls detected during that event. 

To differentiate these two stages, we refer to the first as the 

“call classifier,” and the second as the “event classifier.” 

BANTER (Bio-Acoustic eveNT classifiER) 

one burst pulse and the next successive burst pulse 

(delta.FREQBEG) and the difference between the center frequency 

of one burst pulse and the next successive burst pulse 

(delta.FREQCENTER). This provided a total of 50 measures for 

whistle detections, 52 measures for burst pulse detections, and 

11 measures for click detections.
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ratio of B and C misclassifications, then there is a strong 

likelihood that this event contained species A. 
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Call Classification 

Because our data set contained several hundred thousand 

calls for some species, data were distilled to a smaller number 

With these representative calls, Random Forest models were 

created to classify the whistles, clicks, and burst pulses to 

species using the randomForest v4.6-12 package (Liaw and Wiener 

2002) in R. Each tree in a forest was built using a random 

selection of either 50 or half of the available calls for each 

species, whichever was smaller. This process served to balance 

the number of calls used in the model and avoided biasing 

classification accuracy towards extremely vocal or often-

encountered species. Calls not selected to build a tree were 

referred to as “out-of-bag” (OOB) and were used to validate 

classification accuracy of the forest. Calls were selected 

without replacement and each model contained 10,000 trees which 

was found to produce stable OOB error estimates. The number of 

call measurements examined at every node was left at the 

default: the square root of the total number of measurements for 

of representative whistles, clicks, and burst pulses for each 

species in order to make the classification models 

computationally tractable as well as to avoid overrepresentation 

of calls from very vocal species or clusters of similar calls. 

For each call type, data were distilled by first selecting a 

random subset of up to 10,000 calls from each species. From this 

subset, the 1,000 most representative calls were selected using 

the Density Clustering algorithm (Rodriguez and Laio 2014) as 

implemented in custom modifications to the densityClust v2.0.3 

package in R (code available on request).
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each call type. All trees were built until every node contained 

a single call. 
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These models were used to estimate the species 

classification probability (or the probability of assignment to 

each species) for all calls across all events that had been 

In order to create the Random Forest event classifier, a 

set of predictors was generated from summaries of the call 

classifiers. For every event, we calculated the mean of the 

species classification probabilities for each call type from 

their respective call classifiers. This produced seven 

predictors for whistles and clicks and six predictors for burst 

pulses (Table S1). For example, one predictor was the mean 

probability that all whistles in an event would be classified to 

striped dolphins (Stenella coeruleoalba), while another was the 

mean probability that all whistles would be classified as short 

beaked common dolphins (Delphinus delphis). A similar set of 

predictors (mean species classification probabilities) were 

generated for clicks and burst pulses. For an event, the full 

set of mean classification probabilities to all species for a 

call type summed to one. In addition to these mean species 

classification probabilities, the proportion of each type of 

call present in the event and the overall number of whistles per 

minute in each event were included as predictors. 

Event Classification 

collected. For calls that were not part of the representative 

subset used to build the model, probabilities were based on the 

fraction of 10,000 forest trees that “voted” for a given 

species, while for those that were used to build the model, only 

trees where the calls were OOB were used.
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Only species with at least two independent events (one for 

testing, one for training) were included in creating the event 

classifier. The Random Forest event model was composed of 15,000 
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trees, with each tree in the forest created from equal sample 

sizes as in the call type classifiers. For each tree, a random 

three events from each species (half of the smallest sample 

The towed hydrophone array was deployed for 100 d between 8 

August and 9 December 2014. A total of 14,949 km of trackline 

was surveyed in the study area, (Fig. 1) providing 935 h of 

recordings. Single species detections used in this study 

include: Stenella coeruleoalba, long-beaked common dolphin 

(Delphinus capensis), Delphinus delphis, Risso’s dolphin 

(Grampus griseus), Pacific white-sided dolphin (Lagenorhynchus 

obliquidens), pilot whale (Globicephala macrorhynchus), and 

killer whale (Orcinus orca, Table 2). There were sightings of 

several additional species that could not be considered for this 

Data Collection 

For all four Random Forest models (the three call type 

classifiers and the event classifier), we recorded variable 

importance for each predictor as the mean decrease in prediction 

accuracy when the predictors are randomly permuted. In order to 

assess the performance of each model, we also calculated the 

classification rate expected under a null model of no 

relationship between the predictor variables and the species. 

This was simply taken as the fraction of calls or events 

represented by that species in the overall data set. 

size) were used, with the remaining events designated as OOB, 

and events were sampled without replacement. Four predictors 

were examined at each node in a tree and all trees were built 

until each node contained one event.
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RESULTS 

study due to poor quality or lack of recordings, including: 

bottlenose dolphins (Tursiops truncatus), pygmy killer whale 
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(Feresa attenuata), false killer whales (Pseudorca crassidens), 

and northern right-whale dolphins (Lissodelphis borealis). 

Additionally, Baird’s beaked whales (Berardius bairdii) produce 

The variable importance ranks in the Random Forest models 

varied by species (Fig. 2). Many variables that were high 

ranking for some species were of low importance for other 

species. There was less variability in the variable importance 

ranks for burst pulses. For this call type, the top ranking 

Over two million whistles, clicks, and burst pulses were 

detected in the 153 single-species events using the automated 

detectors in PAMGuard (Table 2); a subset of these data (1,000 

calls per event) were used to develop the call classifiers. 

Click detections represent the entire click; however, whistles 

and burst pulses are detected in fragments, such that any one 

call may consist of one or more detections (Gillespie et al. 

2013). The overall OOB correct classification rate for each call 

type was significantly greater than the 14% expected by chance 

alone for seven species (43% for whistles, 49% for echolocation 

clicks, and 43% for burst pulses, Table 3). Correct 

classification scores varied by species and by call type, as did 

the distribution of the misclassifications (Table 3). For 

example, for S. coeruleoalba 68% of the whistles, 40% of the 

echolocation clicks, and 54% of the burst pulses were correctly 

classified (Table 3). 

Call Classification 

several call types that overlap with dolphin calls; however, 

recording complications prevented incorporation of this species 

for this analysis.
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variables for all species were the delta variables, suggesting 

that inter-pulse interval may be important for species 
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recognition (Fig. 2a). 

Event Classification 

The event classifier was built on the mean species 

Figure 3 illustrates the overlap of events for each species 

in the Random Forest model. It can be seen that although there 

were a large number of D. delphis events, most tend to be 

similar to one another and clustered together. However, there is 

still enough variability in this species to slightly overlap 

with D. capensis and S. coeruleoalba, leading to the 

misclassifications observed. Considerable overlap between G. 

griseus and L. obliquidens lead to one misclassification for 

each species (Table 4), but do not have significant overlap with 

Short-beaked common dolphins (D. delphis) were 

misclassified to the greatest number of other species, with most 

misclassifications being D. capensis. Likewise, D. capensis had 

a single misclassification as D. delphis as well as one as S. 

coeruleoalba. However, the misclassification rate between D. 

capensis and D. delphis (1:5 vs. 11:96, respectively) was not 

significantly different (95% confidence interval of the 

difference in proportions = −0.36–0.55), as the sample size for 

the former is quite small. 

assignment probability for all two million whistles, clicks, and 

burst pulses. Because G. macrorhynchus (Gm) and O. orca (Oo) 

were represented by only a single event, they were eliminated 

from the event classifier (although their calls were used in the 

call classifiers). The overall correct classification rate of 

84% for the event classifier was greater than that expected by 

chance (39%, Table 4).
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the other three species. 

The relative importance of the event predictor variables 
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varied by species (Fig. 4). Two of the more important variables 

for predicting all species but L. obliquidens were the percent 

of whistles and burst pulses classified as D. delphis. The most 

The overall performance of the whistle classifier was 

similar to other studies (Oswald et al. 2007, 2013; Keating et 

al. 2015); however, species-level differences in correct 

classification scores suggest there is room for improvement. In 

Acoustic classification of dolphins is complicated by the 

large diversity of species, overlap in call characteristics 

among species, individual variability in whistle 

characteristics, and the volume of data to be analyzed. 

Application of passive acoustic methods requires a large degree 

of automation, consideration of all species within a geographic 

region, and a relatively high level of classification certainty. 

Significant advances have been made on all three of these 

requisite needs for both whistles and echolocation clicks; 

however, a coherent, user-friendly classification method is 

needed. To our knowledge, this is the first study to attempt to 

combine detection and classification of all call types produced 

by dolphins to provide classification results at the level of 

the dolphin school (event). 

Call Classification 

important predictor for D. capensis was the percent of burst 

pulses classified to this species (bp.D capensis), however, this 

variable was only very important for this species. For L. 

obliquidens, the most important predictor was the fraction of 

echolocation clicks classified to this species.
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DISCUSSION 

particular, correct classification scores for G. macrorhynchus, 

O. orca, and the Delphinus species were lower than have been 
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found in other studies. Given the large number of variables 

measured by ROCCA, it is unlikely that additional measures for 

individual whistles would provide added discriminatory power. 

This study includes a burst pulse classifier for dolphins 

based on a newly developed burst pulse detector implemented in 

the PAMGuard whistle and moan detector (JK, unpublished data). 

The echolocation click classifier also provided mediocre 

performance on its own. However, it also has the greatest room 

for improvement as we only considered a small set of 11 click 

measures in this study and there are additional features that 

could be considered. For example, measures could be derived from 

the spectrum that compare the intensity at different frequencies 

to identify the possible “peaks” and “valleys” that have been 

useful for identifying L. obliquidens and G. griseus (Soldevilla 

et al. 2008). Also, preliminary analysis of similar data has 

shown that filtering out extremely low and high intensity clicks 

can improve classification results for echolocation clicks (JNO, 

unpublished data). Recent studies have also found that species 

discrimination of dolphin clicks may be improved by 

consideration of interclick interval (Frasier 2016). In 

addition, future studies should include cepstral feature 

analysis of echolocation clicks to provide improved resolution 

of these broadband impulse sounds across different platforms and 

noise environments. 

However, filtering out low-intensity calls and false positive 

detections, or consideration of “delta” variables, such as those 

used in the burst pulse detector, may provide improvements in 

whistle classification.
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The burst pulse detector is essentially a variation of the 

whistle detector with slightly different settings, with changes 
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to the method of crossing/joining as well as the connection 

type, minimum length and minimum total size (Table 1). In fact, 

burst pulses are detected by the whistle detector, and whistles 

are detected by the burst pulse detector. Nonetheless, despite 

relatively small differences in the detector settings between 

the whistle and burst pulse detectors, they resulted in very 

different numbers of detections for the same data (Table 2). 

Likewise, there were differences in the patterns of 

misclassification for the whistle and burst pulse classifiers 

(Table 3). Burst pulses are comprised of clicks with very short 

ICI, but they typically appear as stacked tonal calls in 

spectrographs (similar in appearance to harmonics, but with 

consistent frequency bands). The frequency separation between 

each of the stacked tonal sounds is related to the ICI (Wenz 

1964). The two delta variables were intended to provide a 

measure of ICI for burst pulses by identifying the frequency 

difference between successive tonal calls. These two variables 

were consistently important for species classification (Fig. 2). 

The overall results of the burst pulse classifier were not 

impressive; however there is likely room for improvement by 

consideration of alternative delta measures or changing the 

filters applied to the data. For example, all calls with a 

beginning frequency of less than 20 kHz were omitted from this 

classifier; further analysis may identify preferred filter 

settings to maximize classification rate. Likewise, 

consideration of an alternative burst pulse detector tuned to 

burst pulses below 20 kHz may improve discrimination of some 

species.
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Event Classification 

Each independent call classifier provided an estimate of 
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species identity for each call detected within an event. Studies 

have shown that correct classification of species identity at 

the level of the dolphin school (event) is much improved over 

Typically, when Random Forest models are presented with 

unequal sample sizes, they will tend to yield high correct 

classification scores for the dominant class, at the expense of 

the other classes. To mitigate this effect, our models used 

Previous studies found classification of Delphinus species 

to be extremely difficult (Oswald et al. 2007, 2013; Roch et al. 

2011; Lin and Chou 2015) and thus, we had low expectations for 

our ability to differentiate Delphinus species from each other 

(or from S. coeruleoalba) at the event level. Although most 

species had high correct classification scores in the event 

classifier, only 71% of Delphinus capensis (Dc) events were 

correctly classified, with one event misclassified as Delphinus 

delphis (Dd) and another as Stenella coeruleoalba (Sc). D. 

delphis was represented by a very large sample size for each of 

the three call types as well as at the event level, providing an 

overwhelming amount of data to characterize the vocal 

characteristics of this species, and to differentiate them from 

other species for most events. 

the classification of individual calls (Oswald et al. 2013, 

Keating et al. 2015), and consideration of multiple call types 

can further improve classification results (Roch et al. 2011). 

Despite unexceptional results for each of the three call 

classifiers, when combined, they allow for a dramatic increase 

in correct classification, with an overall correct 

classification rate of 84%.
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equally-sized subsets of calls, although a slight advantage may 

remain for D. delphis due to better representation of the 
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variability within the subset. Sample sizes for D. capensis were 

extremely low in comparison to D. delphis. A larger sample size 

should provide improved resolution of the distribution of the 

The hierarchical approach of BANTER allows for independent 

incremental improvement of both the individual call classifiers 

as well as the overall event classifier. Specifically, 

improvements to the stability in classification (and 

misclassification) at the call classifier level will improve the 

overall event classification. Classification stability for 

individual call classifiers may be improved by considering 

additional features or reducing errors in call detection or 

measurement. Additional information used to “describe” the call 

characteristics can be considered, such as the delta variables 

included in the burst pulse classifier. The click classifier has 

the greatest potential for improvement by considering additional 

measures, especially ones more immune to environmental 

variability (such as cepstral measures). We also suggest that 

future studies should use a generic “dolphin” click detector 

rather than the suite of detectors used in this study. While 

this will most likely have little or no effect on the 

Improvements and Future Applications 

vocal characteristics for this species, and better 

discrimination from the closely related D. delphis. If the model 

is constructed with sufficient sample sizes to define call and 

event characteristics for all species, then misclassifications 

can be attributed to “outliers.” In this case, outliers may 

provide additional information about the group composition or 

behavior.
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classification rates at the click classification or event level, 

it will allow for a more simple and standardized application of 
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these methods. The event classifier could be further improved by 

the consideration of additional event-level acoustic measures 

(e.g., mean ICI) or environmental features (e.g., water depth or 

Our initial goal was to include all dolphin species whose 

normal distribution fell within the California Current. During 

this survey, anomalously warm waters resulted in the unusual 

detection of several tropical species in the study area, 

including: F. attenuata, P. crassidens, and G. macrorhynchus. 

Because we required a minimum of two independent events to 

include a species in the classifier, these rare species were 

excluded from the model. Data recording errors further 

eliminated other species of interest, resulting in a classifier 

At the event classification level, the results of each call 

classifier provide an alternative view of the overall event. For 

the whistle and burst pulse detectors, these alternative views 

are of the same calls, with an overlap in call detection for the 

two detectors. While these detectors may not exclusively 

identify a particular call type, sampling these calls with 

slightly different WM detector settings changed number and 

fragmentation of the detections, which lead to differences in 

the distribution of the call classifications. Theoretically, a 

third WM detector, using alternative settings, may provide yet 

another set of fragmented detections with a different 

distribution of call classification. Again, additional WM 

detectors may not identify specific call types, but rather they 

provide additional views of the data that may improve 

discrimination of some species at the event level. 

temperature).
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that is not complete for the study area. Given the likelihood of 

changes in cetacean distribution due to climate change, future 
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acoustic classifiers should attempt to consider all species that 

may fall within the area of interest. 

In theory, once the single-species classification results 

A preliminary examination of the membership probability for 

mixed-species events including D. delphis and S. coeruleoalba 

identified potential behavioral complications to this effort. In 

this study, S. coeruleoalba tended to avoid the vessel while D. 

delphis tended to approach the vessel. When combined with the 

high vocal rate of D. delphis, this difference in approach 

behavior may tend to lead to situations where recordings are 

dominated by the vocalizations of D. delphis within mixed-

species schools. This complication does not preclude the 

possibility of acoustic classification of mixed-species schools; 

however, it must be considered. One means of improving these 

results would be to apply classifications to localized calls to 

identify species composition of subgroups. 

are consistently strong, BANTER can be used to identify mixed-

species events. One of the strengths of the Random Forest 

algorithm is that it provides not only a species classification, 

but also a measure of the strength of that classification in the 

form of the assignment probabilities. If a single-species event 

classifier has large assignment probabilities to the correct 

species (i.e., a large percentage of all events are being 

correctly assigned and they are being assigned with high 

certainty), then mixed-species events should be represented by a 

mix of assignment probabilities that reflects the species 

composition of the school.
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The data for this analysis were collected using a single 

hydrophone within a hydrophone array towed behind a single 

vessel. We expect that our results would be applicable to data 
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collected in the same manner using the same equipment. Future 

tests should examine how differences in hardware (e.g., 

hydrophone sensitivity) or vessel and environmental noise affect 

Hydrophone depth may also affect the variables used in this 

classifier. Studies have shown variation in the measurement of 

echolocation clicks characteristics based on hydrophone depth 

(Baumann-Pickering et al. 2013), and studies are currently being 

conducted to test how hydrophone depth affects whistle and click 

measurements and classification (JNO, unpublished data). In 

addition to the mean species assignment probabilities of calls, 

the event classifier also considers the proportion of calls by 

call type. The detection of calls can vary based on the depth, 

distance, and orientation of the sound source (dolphin) and 

receiver (hydrophone); therefore, the proportion of calls will 

be affected by the location of the source and receiver 

(especially in relation to the thermocline). This classifier was 

developed and tested using recordings collected from a 

relatively shallow hydrophone array towed at 12 m depth; we 

would expect lower correct classification scores for data 

collected at depth. 

variables used in the classifiers, and identify variables that 

are relatively immune to these differences (see Roch et al. 

2015). Exclusion of variables that are not stable across 

platforms will ultimately improve the robustness and overall 

efficacy of the classifier. Also, a robust classifier that is 

insensitive to differences in background noise or hydrophone 

sensitivity is more useful in a wider range of applications.
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Data used in this study were collected from a towed 

hydrophone survey conducted in “closing mode,” where all 

visually obtained detections were approached and most recordings 
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were made in close physical proximity to the dolphin schools. 

The classification results provided in this study pertain to 

this type of survey, and the classifiers may not have the same 

The results of this study show that BANTER should prove to 

be a simple and effective tool for acoustic research, 

management, and mitigation. The high correct classification 

scores we observed can be attributed to the hierarchical 

approach. This approach considers data collected with automated 

systems and minimal human intervention, providing more 

consistent results with fewer biases and errors. The flexible 

framework also allows for incremental testing and improvement of 

the classifier at the call and event level. Relatively minor 

improvements to single-species classification and localization 

should allow for classification of mixed species aggregations. 

We expect that improvements to computer processing power will 

allow real-time use of this classifier in the near future. 

BANTER may be implemented as-is to classify data collected using 

similar survey design in the California Current. BANTER is 

currently being implemented into a new real-time ROCCA 

Conclusions 

level of performance for calls detected at greater distances. 

All call types are subjected to degradation during propagation, 

and distant (faint) calls will have different call 

characteristics than calls produced in closer proximity to the 

hydrophone. Future studies should examine the effect of distance 

on call classification, and ideally call classifiers may be 

adjusted based on distance between the vocalizing dolphin school 

and the recorder.
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classifier within PAMGuard (expected release date early 2017). 

The flexible methodology we have developed can also be easily 
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modified for application in other geographic regions with 

different species composition, or perhaps even for other 

noncetacean taxa. 
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 Table 1. Settings for PAMGuard Whistle and Moan detector for automated detection of twhistles and burst pulses. 
s

Maximum   Connection Minimum  Minimum  Maximum   Median  Subtraction 

 frequency  type  length total size  
 Crossing/joining 

  cross length   filter length  constant 
 Smoothing  Threshold 

 37 kHz c
ri

 8 sides/diagonals    10 slices   50 pixels  Relinkin   5 slices  61  0.02  ON  8 dB 

 36 kHz   4 sides only   7 slices   10 pixels  Discard branched regions  OFF  61  0.02  ON  7 dB 

 Table 2. Sample sizes for each species. Species names (scientific and common name) 

and species code are given for all species included in this study. The total number of u

unique events per species is given, as well as the number of calls per species for nwhistles, echolocation clicks, burst pulses. For species with fewer than two events, 

marked with an asterisk (*), calls were used for development of the call classifier but a

not for final event classification. 

Species name   Common name 
 Species 

 code 
 # Events  Whistles 

 Echolocation 

 clicks 

 Burst 

 pulses 
 Total r  Stenella coeruleoalba  striped dolphin  Sc  13  8,271  29,146  142  37,559 o  Delphinus capensis   long-beaked common dolphin  Dc  7  61,902  119,358  13,529  194,789 

  Delphinus delphis   short-beaked common dolphin  Dd  116  501,288  982,187  138,170  1,621,645 h  Grampus griseus   Risso's dolphin  Gg  5  570  50,286  4,047  54,903 

A
u
t

  Lagenorhynchus obliquidens   Pacific white-sided dolphin  Lo  10  4,794  91,787  5,076  101,657 

 Globicephala macrorhynchus*   pilot whale  Gm  1  734  5,401  157  6,292 

 Orcinus orca*   killer whale  Oo  1  2  1,316  0  1,318 

   Total  153  577,561  1,279,481  161,121  2,018,163 

M
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 Table 3. Confusion matrices (number of calls classified as 

each species), out-of-bag correct classification scores, and 

correct classification scores for call classifier for (a) 

whistles, (b) echolocation clicks, (c) burst pulses. The species 

codes represent the following species: 

(Sc), 

griseus

macrorhynchus

detected for 

(a) Whistles: Out

s
c
ri
p
t

Stenella coeruleoalba  

Delphinus capensis (Dc), Delphinus delphis (Dd), Grampus 

 (Gg), Lagenorhynchus obliquidens (Lo), Globicephala 

 (Gm), and Orcinus orca (Oo). No burst pulses were 

Orcinus orca.

- of- bag estimate of correct classification rate: 43%. 

  Sc  Dc  Dd  Gg  Lo  Gm  Oo 
Correct 

 classification 

 Sc 

 Dc 

 Dd 

 Gg 

 Lo 

 Gm 

 Oo  M
a
n 2,483 

 1,270 

 999 

 28 

 542 

 196 

 2 

 399 

 757 

 578 

 3 

 183 

 34 

 0

 297 

 853 

 1,254 

 11 

 99 

 48 

 0

 12 

 198 

 259 

 471 

 611 

 31 

 0

 316 

 541 

 459 

 34 

 1,240 

 77 

 0

 150 

 114 

 64 

 23

 388 

 348

 0

 0 

 0 

 0 

 0 

 0 

 0 

 0 

 68% 

 20% 

 35% 

 83% 

 40% 

 47% 

 0% 

o
r 

(b) Echolocation clicks: Out - of- bag estimate of correct classification rate: 

 49%. 

h  Sc  Dc  Dd  Gg  Lo  Gm  Oo 
 Correct 

 classification 

 Sc 

 Dc 

 Dd 

 Gg 

 Lo 

 Gm 

A
u
t 2,911 

 448 

 664 

 325 

 214 

 605 

 599 

 2,734 

 1,809 

 406 

 48 

 192 

 128 

 819 

 1,622 

 152 

 56 

 109 

 660 

 956 

 947 

3,31 

 2 

 129 

 427 

 715 

 271 

 564 

 202 

 3,753 

 577 

 874 

 222 

 387 

 240 

 264 

1,78 

 0 

 1468 

 241 

 425 

 40 

 434 

 533 

 40% 

 48% 

 25% 

 71% 

 77% 

 42% 
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Oo 260 29 10 34 98 111 608 53% 

(c) Burst pulses: Out - of- bag estimate of correct classification rate: 43%. 

331 

30 
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101 

Sc
u
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Sc 76 15 10 8 3 30 — 54% 

Dc 1,107 2,034 872 562 543 442 — 37% 

Dd 649 1,217 2,030 741 616 708 — 34% 

Correct 
Dc Dd Gg Lo Gm Oo 

classification 

2,60 

Gg 68 87 9 433 247 — 74% 

1,11 

Lo 463 374 9 1,581 427 — 37% 

Gm 9 24 16 20 58 — 37% 

Oo — — — — — — — 

 Table 4. Confusion matrix (showing number of events 

classified as each species, by species), out-of-bag correct 

classification rate, and correct classification scores (with 

expected correct classification results in parentheses) for the 

event classifier. The species codes represent the following 

species: Stenella coeruleoalba (Sc), Delphinus capensis (Dc), 

Delphinus delphis (Dd), Grampus griseus (Gg), Lagenorhynchus 

obliquidens (Lo). Expected classification scores are based on 

the proportion of all events composed of by each species. 

Out-of-bag estimate of correct classification: 

84% (Expected = 39%) h
o
r 

M
a

Correct u  Sc Dc Dd Gg Lo 
classification 

Sc A12 1 0 0 0 92% (7%) 

Dc 1 5 1 0 0 71% (5%) 

Dd 7 11 96 1 0 83% (77%) 

Gg 0 0 0 4 1 80% (4%) 
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 SUPPORTING I NFORMATION  

 The following supporting information is available for this 

article online:

 Table S1. Description of variables used in call type and 

event Random Forest models. Classifier models include whistle 

detector (DW), burst pulse detector (BP), echolocation click 

detector (EC), and event classifier. c
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